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Abstract
This paper concerns the propagation of particles through a quenched
random medium. In the one- and two-dimensional models considered,
the local dynamics is given by expanding circle maps and hyperbolic toral
automorphisms, respectively. The particle motion in both models is chaotic
and found to fluctuate about a linear drift. In the proper scaling limit, the
cumulative distribution function of the fluctuations converges to a Gaussian
one with system-dependent variance while the density function shows no
convergence to any function. We have verified our analytical results using
extreme precision numerical computations.
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1. Introduction

Variants of a mechanical model now widely known as the Lorentz gas have occupied the minds
of scientists for more than a century. Initially proposed by Lorentz [Lo] in 1905 to describe the
motion of an electron in a metallic crystal, the model consists of fixed, dispersing, scatterers
in R

d and a free point particle that bounces elastically off the scatterers upon collisions.
If the lattice of scatterers is periodic, the model is also referred to as Sinai billiards after

Sinai, who proved [Si] that the system (with d = 2) is ergodic if the free path of the particle
is bounded. In the latter case, it was also proved that, in a suitable scaling limit, the motion
of the particle is Brownian [BuSi]. Sinai’s work can be considered the first rigorous proof of
Boltzmann’s ergodic hypothesis in a system that resembles a real-world physical system.
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Figure 1. Schematic diagram illustrating the qualitative features of our two-dimensional model.
The medium is composed of two different types of square cells separated by walls which allow
particles to pass only in the direction of the arrowheads. The zig-zag line shows a path of a particle
through the medium.

The Lorentz gas exhibits a great deal of complexity. One example is the lack of smoothness
of the dynamics caused by tangential collisions of the particle with the scatterers. Another
one, the presence of recollisions, is a source of serious statistical difficulties that have not been
overcome in the study of the aperiodic Lorentz gas. For more background, see [Ta, Sz, ChMa,
ChDo] and the references therein.

Our study concerns an idealization of the aperiodic Lorentz gas with semipermeable walls
illustrated in figure 1. In each cell, there is a configuration of scatterers drawn independently
from the same probability distribution. In our case, the distribution is Bernoulli, so that there
are two possible configurations to choose from inside each cell. As an important aspect, the
environment thus obtained is quenched; once the scatterer configurations have been randomly
chosen, they are frozen for good, and the only randomness that remains is in the initial data of
the particle. Between the cells are semipermeable walls that allow the particle to pass through
from left to right and from bottom to top, as shown by the arrowheads, but not in the opposite
directions. This model may be thought of as describing the propagation of particles in an
anisotropic medium.

Note that, as a significant simplification, there is no recurrence; once a particle leaves a
cell, it never returns to the same cell again. Yet a particle can occupy a single cell for an
arbitrarily long time before moving on to a neighboring one—albeit a long occupation time
has a small probability. Moreover, where, when and in which direction the particle exits a cell
depends heavily on the scatterer configuration inside the cell, in addition to the position and
direction of the particle at entry. Inside each cell, the dynamics is chaotic and hyperbolic.

In our one- and two-dimensional idealizations, the billiard dynamics is replaced by
discrete dynamical systems acting in each cell. In other words, acting on particle’s current
position by a map associated with the current cell gives its position one time unit later. In
dimension 1, the maps associated with the cells are smooth, uniformly expanding, maps while
in dimension 2 they are smooth, uniformly hyperbolic, maps with one expanding and one
contracting dimension. Such maps retain the chaotic and hyperbolic nature of the problem. A
closely related model has been studied in [AySt, AyLiSt].

Our objective is to understand certain statistical properties of the motion. More precisely,
we are interested in how the particle distribution evolves with time when the initial distribution
is uniform and supported on one initial cell. We make several analytical propositions, which
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we verify numerically. We show that, on the average, the particles follow a linear drift
and that, after taking a suitable scaling limit, the cumulative distribution of the fluctuations
about the mean is Gaussian. Moreover, the drift and variance are the same for (almost)
all environments drawn from the same distribution. Nevertheless, the particle distribution
shows rapid oscillations due to the quenched environment. In particular, the density function
does not converge to that of a normal distribution. In fact, it does not converge at all in the
aforementioned scaling limit.

2. One-dimensional model: expanding maps on the circle

2.1. Preliminaries

Imagine tiling the nonnegative half-line [0,∞) so that each interval—or tile—Ik = [k, k + 1)

with k ∈ N carries a label ω(k) that equals either 0 or 1. Such a tiling can be realized by flipping
a coin for each k and encoding the outcomes in a sequence ω = (ω(0), ω(1), . . .) ∈ {0, 1}N

called the environment. The coin could be balanced but the tosses are independent, with
Prob(ω(k) = i) = pi for all k. In the following, Pp0 will stand for the corresponding
probability measure on the space of Bernoulli sequences ω. In each experiment, we freeze the
environment—meaning that we work with one fixed sequence ω at a time.

The dynamics in our model is generated by the following definitions. Let vn be the
position of the particle and xn its decimal value. Furthermore, suppose A0, A1 ∈ {2, 3, . . .}
and define the circle maps Ti(x) = Aix mod 1. An experiment comprises iterating the map
on R+ × S

1 given by (vn+1, xn+1) = (
vn + Aω([vn])xn − xn, Tω([vn])(xn)

)
, where [vn] is the

integer part of vn, and ω([vn]) is the corresponding component of ω. Our initial condition
is (v0, x0) = (x, x), with x ∈ [0, 1). Let P denote the Lebesgue measure (i.e., the uniform
probability distribution) on the circle S

1 and E the corresponding expectation.
The model thus describes the deterministic motion of a particle in a randomly chosen,

but fixed, environment. In probability jargon, the particle performs a deterministic walk in
a quenched random environment. The map determining vn+1 depends on the tile I[vn]; the
particle is in through the label ω([vn]) of the tile. That is, the motion of the particle is guided
by the a priori chosen environment.

The maps we have chosen are of the simplest kind, which help numerical and analytical
computations. This is not to say that the resulting dynamics is exceptional among more
general expanding maps. In contrast, the qualitative features of the dynamics should be
universal within the classes of maps mentioned in the introduction.

Example 1. A concrete example is obtained by choosing A0 = 2, A1 = 3 and p0 = p1 = 1
2 .

For each x (and ω) we have to compute which map the symbol Aω([v1]) stands for. Each
vn (n � 2) is generically a piecewise affine function of x and the number of discontinuities
grows exponentially with n. We anticipate that, for large values of n, vn behaves statistically
(in the weak sense) as

vn ≈ N (nD, nσ 2), (1)

where D is a deterministic number called the drift, and N (nD, nσ 2) stands for a real-valued,
normally distributed, random variable with mean nD and variance nσ 2. In principle, D and
σ 2 could depend on the environment ω, but remarkably it turns out that they do not, as
long as the environment is typical. By typicality we mean that ω belongs to a set whose Pp0 -
probability is one and whose elements enjoy good statistical properties such as the convergence
of 1

n
#{k < n|ω(k) = 0} to the limit p0.

3
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It is reasonable to expect that the limit,

lim
n→∞

vn(x)

n
,

exists and has the same value for almost all x.4 Thus, we are led to conclude that

D = E
(

lim
n→∞

vn(x)

n

)
= lim

n→∞
1

n
E(vn(x)).

The final equality follows from the bounded convergence theorem.
If the initial condition x ∈ [0, 1) is chosen uniformly at random, vn can be regarded as a

random variable. Let us consider the (asymptotically) centered random variable

Xn = vn − nD,

which measures the fluctuations of vn relative to the linear drift. Provided (1) is true, Xn is
approximately Gaussian with variance nσ 2. More precisely, we would like to know if 1√

n
Xn

converges in distribution to N (0, σ 2). By definition, this means that, for any fixed y ∈ R,

lim
n→∞ P

(
1√
n
Xn � y

)
= 1√

2πσ

∫ y

−∞
e−s2/2σ 2

ds.

2.2. Markov partition

We next reduce the deterministic walk in a random environment to a random walk in a random
(still quenched) environment which is easier to treat. This can be done using a Markov property
of the tiling that allows us, in the statistical sense, to ignore the exact position of the particle
and only keep track of the tile it is occupying.

Let [·] denote the integer part of a number. If we define

Vn = [vn] and xn = vn − [vn], (2)

then the earlier dynamics with the initial condition (v0, x0) = (x, x) is equivalent to

Vn+1 = Vn +
[
Aω(Vn)xn

]
xn+1 = Aω(Vn)xn − [

Aω(Vn)xn

]
. (3)

Recall our convention [0,∞) = ⋃∞
k=0 Ik , where Ik = [k, k + 1) is called a tile. Suppose

now that vn ∈ Ik . This is equivalent to Vn = k. As before, we are interested in the probability
distribution of vn when x is chosen at random, but this time only at the level of tiles. Note
that vn = [vn] + {vn}, where 0 � {vn} < 1. Therefore, vn/

√
n and [vn]/

√
n differ by at most

1/
√

n, so their asymptotic distributions are the same (and in fact very close to each other even
for moderate values of n). More precisely, we wish to know the probability distribution of Vn.
This is the probability vector ρ(n) = (

ρ
(n)
0 , ρ

(n)
1 , . . .

)
where the numbers,

ρ
(n)
k = P(Vn = k),

are such that
∑∞

k=0 ρ
(n)
k = 1.

We now consider the dynamical system being initialized with the condition (v0, x0) =
(x, x), where x ∈ [0, 1) is a uniformly distributed random variable. Since each AiIk is exactly
the union of a few of the intervals Ik′ ,5 the collection {Ik} is a simultaneous Markov partition
for the two maps. We then obtain the Markov property,

P(Vn = kn|Vn−1 = kn−1, . . . , V0 = k0) ≡ P(Vn = kn|Vn−1 = kn−1),

4 This cannot hold for all x. For instance, if x = 1
kAω(0)

, then 1 = vk = vk+1 = · · · and the process stops.

5 Ai maps
[
k + l

Ai
, k + l+1

Ai

)
affinely onto [k + l, k + l + 1).

4
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for admissible histories (in particular k0 = 0). Thus, the statistics of Vn is precisely described
by a time-homogeneous Markov chain on the countably infinite state space N with the transition
probabilities

γk→k+l =
{

P(vn+1 ∈ Ik+l|vn ∈ Ik) = 1
Aω(k)

if l ∈ {0, 1, . . . , Aω(k) − 1},
0 otherwise

and initial distribution

ρ(0) = (1, 0, 0, . . .).

Note that the above holds for any environment, ω, but the resulting Markov chain does depend
on the choice of ω.

Defining the transition matrix � = (γk→k′)k,k′ , ρ(n) = ρ(n−1)�. Thus,

ρ(n) = ρ(0)�n (4)

for an arbitrary initial distribution. In principle, (4) provides us with complete statistical
understanding of the dynamics. For instance, the drift can be expressed as

D = lim
n→∞

1

n
E(vn) = lim

n→∞
1

n
E(Vn) = lim

n→∞
1

n

∞∑
k=0

kρ
(n)
k .

In practice, calculating �n for large values of n is difficult.

2.3. Drift and variance

For each (i, j) ∈ {0, 1}2 the transition probability at time n from a tile labeled i to a tile labeled
j is

αij (n) = P(ω(Vn+1) = j |ω(Vn) = i).

The analysis of this quantity is subtle, because it depends on the tiling. For instance, if
ω = (0, 0, . . .), then P(ω(Vn+1) = 0|ω(Vn) = 0) = 1.

The conditional probability P × Pp0(ω(V1) = j |ω(V0) = i) equals

α∗
ij = δij

(
1

Ai

+

(
1 − 1

Ai

)
pi

)
+ (1 − δij )

(
1 − 1

Ai

)
pj ,

because the elements ω(k) of the tiling are independent. Here pi is the Bernoulli probability
of getting an i in the tiling. We think of α∗

ij as an effective transition probability which only
depends on the statistical properties of the tiling.

As n increases, the position of the particle at time n depends on the tiling on an increasing
subinterval of [0,∞) and should therefore reflect increasingly the statistics of the tiling instead
of its local details. We, therefore, expect the actual transition probability αij (n) to converge
to the effective value α∗

ij with increasing time:

lim
n→∞ αij (n) = α∗

ij .

Despite this not being a rigorous statement we will build our analysis on it and show that it
leads to precise predictions about the process.

Moreover,

lim
n→∞(α∗)n =

(
p 1 − p

p 1 − p

)
(5)
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for a p ∈ (0, 1) that can be found by diagonalizing α∗ or by solving the equilibrium equation
(p, 1 − p)α∗ = (p, 1 − p):

p = p0
(
1 − 1

A1

)
1 − p1

1
A0

− p0
1
A1

= p0A0(A1 − 1)

A0A1 − p1A1 − p0A0
.

For instance, in the case of example 1 we obtain p = 4
7 .

Note that, for any probability vector (q, 1 − q),

(q, 1 − q) lim
n→∞(α∗)n = (p, 1 − p).

The probability vector,

(q, 1 − q)

k∏
n=0

α(n) = (q(k), 1 − q(k)),

will converge to some (q∗, 1 − q∗), because α(n) → α∗. In fact,

lim
N→∞

(q, 1 − q)

2N∏
n=0

α(n) = lim
N→∞

(q(N), 1 − q(N))

2N∏
n=N+1

α(n)

= (q∗, 1 − q∗) lim
N→∞

(α∗)N = (p, 1 − p),

as N → ∞.
We interpret the result above so that P(ω(Vn) = 0) → p and P(ω(Vn) = 1) → 1 − p as

n → ∞. That is, along a given (typical) trajectory, the fraction of time the particle spends in
a tile labeled 0 is p:

lim
n→∞

#{k < n|ω(Vk) = 0}
n

= p. (6)

Note that p does not depend on the (typical) tiling.

2.3.1. Drift. Define the jumps ξi = Vi − Vi−1 (i � 1). Then Vn = ∑n
i=1 ξi . We also denote

ξ (j) a random variable that takes values in {0, . . . , Aj − 1} with a uniform distribution. For a
(typical) tiling,

D = lim
n→∞

E(Vn)

n
= lim

n→∞

∑n
i=1 E(ξi)

n
= pE(ξ (0)) + (1 − p)E(ξ (1))

= p
A0 − 1

2
+ (1 − p)

A1 − 1

2
= pA0 + (1 − p)A1 − 1

2
.

Numerical results as shown in figure 2 lead us to conclude that limn→∞ Vn

n
= D also for

individual trajectories. In the case of example 1, D = 5
7 .

2.3.2. Variance. The variance is

σ 2 = lim
n→∞ Var

(
Xn√

n

)
= lim

n→∞
Var(Vn)

n
.

Let us assume A0 � A1 and study the process Wn = ∑n
i=1 ζi having the i.i.d. increments

ζi whose distribution is Prob(ζ1 = k) = p

A0
+ 1−p

A1
if 0 � k < A0 and Prob(ζ1 = k) = 1−p

A1
if

A0 � k < A1. The increments have been chosen so that Wn mimics Vn as closely as possible.
For instance, staying in the same tile (ζ1 = 0) has probability p

A0
+ 1−p

A1
, where p is the

probability of being in a tile labeled 0 and 1
A0

is the probability of staying in that tile, while the

6



J. Phys. A: Math. Theor. 42 (2009) 245101 T Simula and M Stenlund

second term accounts similarly for the case of label 1. Then Mean(Wn) = nMean(ζ1) = nD.
Setting K(m) = ∑m−1

k=0 k2 = 1
3 (m − 1)3 + 1

2 (m − 1)2 + 1
6 (m − 1), the variance of Wn is

Var(Wn) = nVar(ζ1) = n

(
p

A0
K(A0) +

1 − p

A1
K(A1) − D2

)
.

Comparing this formula with our numerical experiments provides overwhelming evidence for
the relationship Var(Wn) = Var(Vn). Using the values p = 4

7 and D = 5
7 obtained from

example 1, the formula above gives 1
n

Var(Wn) = 24
49 .

2.4. Sensitivity on the initial condition

Let us next consider the Lyapunov exponent

λ = lim
n→∞

1

n
ln

dvn

dx
= lim

n→∞
1

n

n∑
k=1

ln
dvk

dvk−1
,

which measures the exponential rate at which two nearby initial points drift apart under the
dynamics. Above, the chain rule has been used. Recall the notation introduced in (2) and that
v0 = x0 = x. As vk = vk−1 +

(
Aω(Vk−1) − 1

)
xk−1,

dvk

dvk−1
= 1 +

dAω(Vk−1)

dvk−1
xk−1 +

(
Aω(Vk−1) − 1

)dxk−1

dvk−1
.

With probability zero vk−1 is an integer, in which case vk−1 = Vk−1, xk−1 = 0, and the

process stops. We assume that vk−1 is not an integer. Then
dAω(Vk−1)

dvk−1
= 0,

dxk−1

dvk−1
= 1, and

dvk

dvk−1
= Aω(Vk−1), such that, by (6),

λ = lim
n→∞

1

n

n∑
k=1

ln Aω(Vk−1) = p ln A0 + (1 − p) ln A1

and is positive. Roughly speaking, the distance between two very nearby trajectories thus
grows like eλn = (

A
p

0 A
1−p

1

)n
, which is tantamount to chaos.

2.5. Numerical study

The following numerical results are presented in the context of example 1. However, we have
checked that the conclusions also hold for other values of the parameters. In order to study
the model introduced above numerically we first create the random tiling (or environment)
ω of length 2n + 1 where n is the number of jumps to be performed in a single trajectory.
This guarantees that every possible path fits inside the tiling although some computational
effort could be saved by choosing the number of tiles closer to [nD]. Note also that while,
in principle, new tiles could be added dynamically to the end of the tiling as required, it is
computationally far more efficient to construct the tiling as a static entity in the beginning of
the computation.

In practice, the tiling is generated by producing a vector of pseudo-random numbers
distributed uniformly on the interval (0, 1) using the Mersenne twister algorithm. The label
of the tile ω(k) is then obtained by rounding the number on each tile k to the nearest integer.
The computational tiling ω̂ is finalized by the operation ω̂(k) = ω(k)(A1 − A0) + A0 yielding
a vector whose each element is either A0 or A1.

Each ensemble member (particle trajectory) is initialized by generating a pseudo-random
number to determine the starting point x0 ∈ (0, 1) of the trajectory. The subsequent particle
positions are determined by the underlying tiling. The jumping process could be performed

7
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Figure 2. Integer part of the position of a particle, Vn, divided by the number of jumps, n, taken
for a single typical trajectory. The horizontal line denotes the exact value for the drift D = 5/7.
The inset shows a blow-up of a part of the main figure.

deterministically by keeping track of the exact position vn of the particle. However, the
Markov property of the process provides us a superior way of obtaining the desired statistics
stochastically. In this algorithm, before every jump, we sample a new pseudo-random number
d from the interval (0, ω̂(k)) depending on the current tile k. Then a jump to the tile k + [d] is
made and the whole procedure is repeated n times to produce a single trajectory.

Figure 2 shows a typical trajectory of n = 106 jumps obtained using the above prescription.
The integer part of the position of a particle, Vn, divided by the number of jumps, n, taken is
clearly seen to saturate to the analytical value for the drift D = 5/7, plotted as a straight line
in the figure. The inset shows the late-time evolution of the drift of the particle.

Figure 3 displays the computed probability density function for the random variable
(Vn − nD)/

√
n obtained using 107 trajectories of length n = 105. The solid curve is a

normalized Gaussian function with zero mean and a variance of σ 2 = 24/49. Each point
in the figure corresponds to a unique Vn and indicates the relative frequency that a trajectory
ends in the corresponding tile after n steps. Joining neighboring points (determined by their
abscissae) with lines reveals rapid oscillations in the probability density function. Such lines
have been omitted from figure 3 for the sake of clarity. In the left- and right-hand side insets
only trajectories ending in tiles labeled by 0 and 1, respectively, are considered. If the graph
in the right-hand side inset is vertically stretched by the factor p

1−p
, it becomes practically

overlapping with that in the left-hand side inset. This is a consequence of the fact that
the fraction of time the particle spends in tiles labeled 0 and 1 is p and 1 − p, respectively. In
the figure, one can discern several Gaussian shapes, all of which are very well approximated
by the analytical Gaussian after normalization with a suitable constant. These ‘shadow’
Gaussians are caused by the quenched environment and they collapse to a single curve if a
non-quenched model is used in which Ai is chosen randomly before every jump. The full
multi-Gaussian structure of the probability density function is not currently well understood.

Figure 4 shows two cumulative distribution functions, obtained by integrating the
numerical and analytical probability densities shown in figure 3. They match to a great
accuracy, and we are lead to believe that the random variable Xn/

√
n = (vn − nD)/

√
n is,

8
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Figure 3. Probability density of the random variable (Vn − nD)/
√

n. The solid curve is the
Gaussian with zero mean and variance σ 2 = 24/49. The insets in the left- and right-hand sides
show the probability densities for the subsets of trajectories ending in a tile labeled by 0 and 1,
respectively. The horizontal lines at levels 0.4, 0.8, 0.3 and 0.6 in the insets are plotted to guide
the eye.
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Figure 4. Cumulative distribution function corresponding to the data shown in figure 3. The two
curves shown (computational and analytical) are overlapping.

indeed, normally distributed with zero mean and variance σ 2. We have also analyzed the
characteristic function which leads to the same conclusion.

To conclude, our numerical data strongly supports the theoretical analysis presented
earlier. Within the numerical accuracy, the distribution is Gaussian with the drift and variance
predicted by our analytical calculations. We have performed these numerical experiments
using different (fixed) tilings and filling probabilities, pi , and have always arrived at the same
conclusion.
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3. Two-dimensional model: hyperbolic toral automorphisms

3.1. Preliminaries

We begin by tiling the first quadrant of the plane by unit squares, attaching the label 0 or 1 to
each tile. That is, corresponding to each vector k = (k1, k2) ∈ N

2 the tile [k1, k1+1)×[k2, k2+1)

carries a label ω(k) ∈ {0, 1}. The fixed tiling ω = (ω(k))k∈N
2 is our environment, and Pp0

stands for the Bernoulli probability measure on the space of such tilings.
The process vn takes place on the plane and each Ai (i = 0, 1) is a matrix with positive

integer entries and determinant 1. Such a matrix is hyperbolic, with two eigenvalues, λ > 1 and
λ−1, and the eigenvector corresponding to λ points into the first quadrant. The formula Tix =
Aix mod 1 defines a hyperbolic toral automorphism. A precise description of the dynamics is
given by the map on R

2
+ × T

2 defined by (vn+1, xn+1) = (
vn + Aω([vn])xn − xn, Tω([vn])(xn)

)
,

where [vn] is the integer part of vn. The initial condition is (v0, x0) = (x, x), with x ∈ [0, 1)2.
Let P denote the Lebesgue measure (i.e., the uniform probability distribution) on the torus T

2

and E the corresponding expectation.

Example 2. A concrete example is obtained by choosing A0 = (2 1
1 1

)
, A1 = (3 1

2 1

)
and

p0 = p1 = 1
2 .

We claim that the limit

D = E
(

lim
n→∞

vn(x)

n

)
= lim

n→∞
1

n
E(vn(x)),

called the drift, exists and that the (asymptotically) centered random vector

Zn = (Xn, Yn) = vn − nD,

which measures the fluctuations of vn relative to the linear drift, is approximately Gaussian
with the covariance matrix nσ 2. More precisely, 1√

n
Zn converges in distribution to N (0, σ 2),

where σ 2 is given by limn→∞ Cov
(

1√
n
Zn,

1√
n
Zn

)
: denoting Ez = (−∞, z1] × (−∞, z2] for

any fixed z = (z1, z2) ∈ R
2,

lim
n→∞ P

(
1√
n
Xn � z1,

1√
n
Yn � z2

)
= 1

2π
√

det σ 2

∫
Ez

e− 1
2 s·(σ 2)−1s d2s.

In contrast with the one-dimensional case, the tiling is not a Markov partition for the
maps, which considerably complicates the analysis of the model.

3.2. Drift

Let us continue to denote Vn = [vn]. We conjecture that the drift vector D = (
d1

d2

)
is given by

D = pD0 + (1 − p)D1,

where Di = E(Aix − x) = (Ai − 11)
( 1

2
1
2

)
equals the average jump under the action

of the matrix Ai and p is as in (6). The value of p is obtained, as above (5), from
an effective transition matrix α∗. Its general element α∗

ij is the conditional probability
P × Pp0(ω(V1) = j |ω(V0) = i) = P × Pp0(ω([Aix]) = j |ω(0, 0) = i)—the probability of
jumping to a tile labeled j when the initial tile is labeled i and when the choice of the tiling is
being averaged out.

In practice, α∗
ij is computed as follows. We assume that the initial tile is labeled i, i.e.,

ω(0, 0) = i. The image of the unit square under Ai is a parallelogram of area one that

10
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Figure 5. Values for the x and y components of the drift and the covariance matrix elements
σ 2

11, σ
2
12 = σ 2

21, and σ 2
22 as a function of n, respectively, in descending order at n = 1000. The

straight lines indicate the analytical values of drift components d1 and d2.

overlaps with various tiles. The area of intersection of the parallelogram with a tile represents
the probability of jumping to that tile. The matrix element α∗

ij can then be computed recalling
that each tile is labeled 0 with probability p0 independently of the others. In the case of

example 2, we obtain D0 =
(

1
1
2

)
,D1 =

(
3
2
1

)
and α∗ =

(
1
4 + 3

4
1
2

3
4

1
2

5
6

1
2

1
6 + 5

6
1
2

)
=

(
5
8

3
8

5
12

7
12

)
, which

results in p = 10
19 and D =

( 47
38
14
19

)
.

3.3. Numerical study

As mentioned earlier, the Markov property deployed in the numerical study of the one-
dimensional problem where we used a stochastic jumping algorithm does not, unfortunately,
apply in the two-dimensional case. Instead, we are forced to compute the particle trajectories
fully deterministically which renders the numerical problem difficult. Due to the chaotic nature
of the process, the position vn of the particle must now be represented with an accuracy to
approximately 2n decimal places in order to keep the accumulation of the numerical rounding
errors bounded. This must be done using a software implementation since the double precision
float native to the hardware only contains 15 decimal places.

We first create the tiling ω as in the one-dimensional case with the exception that it is
now a two-dimensional object. We then choose randomly the initial position of the particle
within the unit square. The label ω(0, 0) of the initial tile is then read and the new position of
the particle is computed by applying the corresponding map Tω(0,0). This jumping procedure
is repeated n times. The time to compute a single trajectory increases dramatically as the
path length n is increased due to the corresponding increase in the required accuracy of the
representation of the position of the particle.

Figure 5 shows the convergence of the drifts Di and that of the covariance matrix elements
σ 2

ij . The values in descending order at n = 103 are d1, d2 , σ 2
11, σ

2
12 = σ 2

21 and σ 2
22. The straight

lines indicate the analytical values for the drift components. Each data point is composed
using 104 trajectories.
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Figure 6. End points vn of 104 trajectories in the plane after n = 1 (a), n = 2 (b), n = 3 (c) and
n = 2000 (d) jumps. The straight diagonal lines trace the drift vector and the cross in frame (d)
shows the eigendirections of the covariance matrix. Each frame comprises 10 000 data points.
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Figure 7. Contour plot of the particle distribution in the plane after n = 100 jumps. The straight
line shows the direction of the drift vector.

In figures 6(a)–(c) we have plotted the particle positions in the plane after n = 1, 2, 3 and
2000 jumps, respectively. The trajectories were initiated randomly from the unit square. The
straight diagonal lines indicate the direction of the drift and the cross in frame (d) denotes the
directions of the eigenvectors of the covariance matrix. Since the initial tile in our environment
had the label ω(0, 0) = 1, the frame (a) simply shows how A1 maps the unit square. The
subsequent jumps shred the distribution, as illustrated by the frames (b) and (c), because
particles in different tiles undergo different transformations. Figure 7 shows a contour plot
of the particle distribution after n = 100 jumps and reveals prominent stripes, due to the
shredding, which are roughly aligned with the direction of the drift vector.
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Figure 8. Probability density function for the random variable Zn/
√

n. The spikes are an inherent
feature of the distribution, and the density does not converge to any function. Embedded is the
analytical Gaussian function.

Figure 9. Cumulative distribution function corresponding to the data shown in figure 8.

Figure 8 shows the probability density of 1√
n
Zn obtained after n = 2000 jumps. Embedded

is also a two-dimensional Gaussian probability density which has the same covariance matrix
as the numerical data. Despite the fact that the density function itself does not converge to any
function, the corresponding cumulative distribution function shown in figure 9 is smooth and
matches that of the corresponding Gaussian distribution. The maximum absolute difference
between the numerical and analytical functions is 0.017, most of which is due to the highest
peak in figure 8.

4. Conclusions

We have investigated the statistical properties of a deterministic walk in a quenched one-
dimensional random environment of expanding circle maps and have analytically found
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the drift and variance for the resulting Gaussian probability distribution. Using numerical
experiments we have been able to verify our analytical predictions. We have further studied
a two-dimensional model similar to the one-dimensional system where hyperbolic toral
automorphisms take the place of the circle maps. Again the probability distribution turns
out to be Gaussian with certain linear drift and covariance. The key feature and complicating
factor in both the one- and two-dimensional cases is the fixed random environment. A direct
consequence of this is that, even after the proper scaling, the probability density does not
converge to any function—a result which persists both in our one- and two-dimensional
models. The implementation of recurrence to this model will be left for future work.
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